TD numéro 6

Exercice 1. On suppose donnés :

- Une famille de schémas $(X_i)_{i \in I}$,
- Pour tout $i \in I$, une famille de sous-schémas ouverts $(X_{i,j})_{j \in I}$ de X_i , avec $X_{i,i} = X_i$,
- Des isomorphismes $f_{i,j}: X_{i,j} \to X_{j,i}$, avec $f_{i,j}(X_{i,j} \cap X_{i,k}) \subset X_{j,i} \cap X_{j,k}$ et $f_{i,k} = f_{j,k} \circ f_{i,j}$ sur $X_{i,j} \cap X_{i,k}$ pour tous $i, j, k \in I$ (et par convention $f_{i,i} = \operatorname{Id}$).

Montrer qu'il existe un unique schéma X (à unique isomorphisme près) muni d'immersions ouvertes $g_i: X_i \to X$ telles que $g_i = g_j \circ f_{i,j}$ sur $X_{i,j}$. C'est le recollement des X_i le long des $X_{i,j}$.

Exercice 2. On considère $B = \bigoplus_{d \ge 0}$ un anneau gradué (i.e B_d est un groupe abélien et on a $B_d.B_e \subset$

 B_{d+e}). Les éléments de B_d sont dits homogènes de degré d. Un idéal I de B est dit homogène s'il est engendré par des éléments homogènes (ce qui revient à dire que $I = \bigoplus_{d \geqslant 0} (I \cap B_d)$). Dans ce cas, l'anneau B/I est gradué par $(B/I)_d = B_d/(I \cap B_d)$. On note $B_+ = \bigoplus_{d \geqslant 0} B_d$.

On note $\operatorname{Proj}(B)$ l'ensemble des idéaux premiers homogènes qui ne contiennent pas B_+ . Pour tout idéal homogène I de B, on note $V_+(I)$ l'ensemble des éléments \mathfrak{p} de $\operatorname{Proj}(B)$ contenant I et on munit $\operatorname{Proj}(B)$ de la topologie engendrée par les fermés $V_+(I)$. Si f est un élément homogène de B, on note $D_+(f)$ l'ensemble des éléments \mathfrak{p} de $\operatorname{Proj}(B)$ ne contenant pas f.

- 1. Vérifier que les $V_{+}(I)$ définissent bien une topologie.
- 2. Montrer que les ensembles $D_+(f)$ forment une base d'ouverts pour la topologie de Proj(B).
- 3. Soit f un élément homogène de B^+ , montrer que l'application $u(f): \mathfrak{p} \mapsto (\mathfrak{p}B_f) \cap B_{(f)}$ est une bijection de $D_+(f)$ sur $\operatorname{Spec}(B_{(f)})$ et qu'un idéal homogène I est inclus dans \mathfrak{p} si et seulement si u(f)(I) est inclus dans $u(f)(\mathfrak{p})$. En déduire que u(f) est un homéomorphisme. u(f) munit alors $D_+(f)$ d'une structure de schéma affine.
- 4. Soit g un élément homogène de B^+ tel que $D_+(g) \subset D_+(f)$. Montrer que l'on a un morphisme canonique d'anneaux $B_{(f)} \to B_{(g)}$ qui est un isomorphisme si $D_+(g) = D_+(f)$.
- 5. Montrer que l'on a un diagramme commutatif :

$$D_{+}(g) \xrightarrow{u(g)} \operatorname{Spec}(B_{(g)})$$

$$\downarrow^{i} \qquad \qquad \downarrow^{i_{f,g}}$$

$$D_{+}(f) \xrightarrow{u(f)} \operatorname{Spec}(B_{(f)})$$

où i est l'inclusion et $i_{f,g}$ le morphisme de schémas affines induit par le morphisme canonique $B_{(f)} \to B_{(g)}$.

6. Montrer que les homéomorphismes u(f) induisent un faisceau $\mathcal{O}_{\text{Proj}(B)}$ tel que pour tout $f \in B_+$, $D_+(f)$ est isomorphe à $\text{Spec}(B_{(f)})$ (en particulier Proj(B) est un schéma). Montrer que la tige $\mathcal{O}_{\text{Proj}(B),\mathfrak{p}}$ est isomorphe à $B_{(\mathfrak{p})}$ pour tout $\mathfrak{p} \in \text{Proj}(B)$.

Exemple: Soit A un anneau et $B = A[x_0, ..., x_n]$. Proj(B) est alors le recollement des espaces affines $X_i = \text{Spec}(A[(x_i^{-1}x_j)_{j \in \{0,...,n\}}])$ le long des $X_{i,j} = D(x_i^{-1}x_j)$, c'est-à-dire l'espace projectif \mathbb{P}^n_A .

Exercice 3.

- 1. Soit S un anneau gradué. Montrer que $Proj(S) = \emptyset$ si et seulement si tous les éléments de S_+ sont nilpotents.
- 2. Soit $\phi: S \to T$ un morphisme d'anneaux gradués. Soit $U = \{P \in \operatorname{Proj}(T) \mid \mathfrak{p} \not\supseteq \phi(S_+)\}$. Montrer que U est un ouvert de $\operatorname{Proj}(T)$, et montrer que ϕ détermine un morphisme naturel $f: U \to \operatorname{Proj}(S)$.
- 3. On suppose que ϕ_d est un isomorphisme pour tout $d \ge d_0$, où d_0 est un entier fixé. Montrer que $U = \operatorname{Proj}(T)$ et que $f : \operatorname{Proj}(T) \to \operatorname{Proj}(S)$ est un isomorphisme.

Exercice 4. On dit qu'un schéma X est quasi-compact si son espace topologique sous-jacent est quasi-compact. Montrer qu'un schéma est quasi-compact si et seulement s'il est l'union finie de schémas affines.

Exercice 5.

- 1. Soit X un schéma et A un anneau. Montrer que l'on a une bijection entre $\operatorname{Mor}(X,\operatorname{Spec}(A))$ et $\operatorname{Hom}(A,\mathcal{O}_X(X))$.
- 2. Soit X un schéma quasi-compact, soit $A = \mathcal{O}_X(X)$. Soit $f: X \to \operatorname{Spec}(A)$ le morphisme induit par l'identité de A. Montrer que f(X) est dense dans $\operatorname{Spec}(A)$.